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Abstract

The Safety Performance Analysis System (SPAS) is a Web-based analytical tool, or rather a database system, that is being fielded by the
Federal Aviation Administration (FAA). It is intended to provide the FAA’s Aviation Safety Inspectors (ASIs) with the means to evaluate
and control appropriate surveillance levels for aircraft operators. The SPAS enables qualitative trend analysis to be performed at the national,
regional, and district levels. This will permit the system to be more sensitive to particular areas of concern for a given region. For example,
inspectors particularly desire a tool to help them recognize problems which are occurring in the fleet. Especially desirable is a tool that could
do so automatically by searching for trends and alerting the relevant inspectors.

The Service Difficulty Reporting (SDR) system, one of the SPAS databases, provides FAA inspectors with information related to aircraft
equipment inoperability, such as in-service difficulties, malfunctions, and defects. The SDR data provide information for planning, directing,
controlling, and evaluating certain assigned safety and maintenance programs. This paper presents previous SDR trending results for DC-9
operators with heterogeneous fleets, but now uses data from two specific operators with homogenous fleets consisting entirely of 737 aircraft.
This new research is an extension of the previous SDR forecasting research, but now provides more meaningful information, as the DC-9
aircraft data were composed of numerous operators with mixed fleets and differing operating and maintenance policies. Multiple regression
and neural network models are the principal two forecasting methods examined. A population modeling concept, or data grouping strategy,
appears to be an effective technique for trending SDRs for operators of either heterogeneous and homogeneous fleets. The forecasting
methods presented in this paper offer technical enhancements for SDR trending compared to the current qualitative method of visual
observation of graphical plots.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Inspection and diagnostic activities are integral compo-
nents of an effective maintenance strategy in an attempt to
ensure aviation system safety, reliability, and availability.
The Federal Aviation Administration (FAA) in the United
States is responsible for regulating aircraft traffic and safety.
An expected increase in usage of domestic flights in the next
few years coupled with an aging population of aircraft has
led the FAA to initiate new aviation safety research efforts
[1]. The Safety Performance Analysis System (SPAS) is an
analytical tool, or rather a database system, that is currently
in a production version [2-4]. The SPAS steering committee
was established in 1991, the first prototype was launched in
1993 and operational testing was completed in 1995. The
production version, SPAS II, is a Web-based software that is
intended to provide the FAA’s Aviation Safety Inspectors
(ASIs) with the means to evaluate and control appropriate

surveillance levels for aircraft operators. As of July 1998,
approximately 50% of the estimated 3400 inspector work-
force from various FAA Fight Standards District Offices
(FSDOs) across the United States have already completed
software training.

The SPAS integrates a number of existing FAA data-
bases, and enables data analysis to be performed at the
national, regional, and district levels. This will permit the
system to be more sensitive to particular areas of concern
for a given region. For example, inspectors particularly
desire a tool to help them recognize problems which are
occurring in the fleet. Especially desirable is a tool that
could do so automatically by searching for trends and alert-
ing the relevant inspectors.

The SPAS also supports the user’s ability to check for the
occurrence of problems identified as related, i.e. it identifies
patterns. This includes the occurrence of patterns which are
cyclic or repeated. It includes patterns which result from
comparisons to group or industry standards, or which
occur in a clustered fashion. Patterns emerging from the
data will be able to trigger an alert for the inspector who
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has placed an ‘‘automatic alert tag’’ on the aircraft operators
of interest.

A performance measure in the SPAS is a pre-defined
formula that compares the performance of an aircraft opera-
tor to the historical performance of similar aircraft opera-
tors, to itself, or to preset limits [2]. A performance measure
is not designed to completely describe an aircraft operator.
Instead, it is a tool that allows inspectors to evaluate an
operator’s performance in a specific subject area, as
compared to historical patterns. The direction of a perfor-
mance measure’s value (i.e., negative or positive) is
intended to be simple. For example, increasing the value
of an operator’s event rate that is a measure of accidents,
incidents, and occurrences is undesirable, but increasing the
value of its profit margin is desirable. One of the SPAS
databases is the Service Difficulty Reporting (SDR) system.
The SDR submission rate is a SPAS performance measure
which is an airworthiness or maintenance-related metric.
This paper presents alternative methods for trending the
SDR submission rate for operators of large commercial
aircraft, such as the DC-9 and 737 aircraft.

1.1. Background on service difficulty reports (SDRs)

An SDR provides FAA safety inspectors with informa-
tion related to abnormal and potentially unsafe mechanical
conditions in aircraft components and equipment. Informa-
tion is provided on equipment inoperability, such as in-
service difficulties, malfunctions, and defects. The report
assists the inspectors with planning, directing, controlling,
and evaluating certain assigned safety and maintenance
programs [5]. The system also provides FAA managers
and inspectors with a means for measuring the effectiveness
of the self-evaluation techniques being employed by certain
segments of the civil aviation industry. The completion of
an SDR requires careful review of the reported discrepancy
and supporting data. An effective evaluation of the extent of
the problem and its causes is essential for determining
corrective action. If the opportunity exists, the inspector
usually reviews prior reports for possible trends, e.g. vendor
problems, manufacturer equipment problems, training, and/
or procedural problems. However, there are currently no
systematic or quantitative techniques used for identifying
possible trends. Trending analysis is based on visual inspec-
tion of graphical data plots. Approximately 25 000–30 000
SDRs per year are submitted to the FAA.

It should be noted that the SDR database is not a relia-
bility database, as there is no estimation of failure rates, etc.
based upon the SDR submission rate. In spite of some
limitations with the data collected, it is possible to draw
general impressions by examining SDR submission rates
and then using this performance measure to provide the
rationale for a more detailed examination of aircraft systems
or components.

Estimation of the total number of SDRs in a given time
interval that a particular airline would be expected to have,

adjusting for age of the aircraft, flight time, and landings,
could help to identify situations in need of heightened level
of surveillance by the FAA’s safety inspectors, e.g., if the
airline’s number of SDRs is far above or below what should
be expected. An excessive number of SDRs in a given time
period could suggest mechanical, operating, or design
problems with certain aircraft. While too few SDRs reported
in a given time may not necessarily be problematic, an
expert panel of safety inspectors noted that a very low
number of SDRs for an airline in a given time period
could possibly suggest organizational or management
problems, lack of regulatory compliance, airline mainte-
nance cutbacks, or financial or labor problems. Both situa-
tions would merit closer scrutiny by FAA safety inspectors.

Fullwood et al. [6] further support the need to develop
new trending methods for SDRs. Their study discovered a
relationship between equipment operability reported in the
SDR and aviation safety as reported in the FAA’s Accident
Incident Data System (AIDS) that contains reports primarily
compiled from National Transportation Safety Board
(NTSB) accident investigations. Although equipment
problems are not the only factor in aviation accidents, it is
the factor reported in the SDR. Fullwood et al. [6] used both
a conventional method, in which reporting frequencies are
taken from the SDR database and used with an aircraft
reliability block diagram model of critical systems to predict
aircraft failure, and a shape analysis that uses the magnitude
and shape of the SDR distribution compared with the AIDS
distribution to predict aircraft failure.

1.2. Previous SDR research and modeling deficiencies

Luxhøj et al. [7] report on SDR trending models for the
DC-9 aircraft, and for completeness, these models are
reported in this paper. The DC-9 models use a forecast
horizon of one year. The data used in this past research
investigation included a subset of the SDR database that
had been merged with the Aircraft Utilization (ARS) data-
base for the same set of planes. A data grouping method is
used to obtain a ‘‘population’’ model. Multiple regression
and neural network (NN) models were studied and forecast-
ing accuracy for each method was reported. In this study, the
original ungrouped data set appeared to be noisy. A ‘‘popu-
lation concept’’ proved to be a very effective modeling
technique both for regression analysis and in the construc-
tion of NNs for determining strategic safety inspection indi-
cators. While the population concept is constructive for
developing models to predict national norms for SDR
reporting, there is a loss of information in grouping the data.

In the current research, SDR trending models are devel-
oped for both 6-month and monthly planning horizons for
the 737 aircraft. The relationship between other aviation
safety variables and the SDR number is also investigated.
According to the previous research, flying hours, cycles (i.e.
the number of takeoffs and landings), age, Airworthiness
and Operations Surveillance Results variables are considered
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to be important independent variables [7]. Variable defini-
tions are provided in the subsequent sections.

This current research uses data from two specific opera-
tors with homogenous fleets consisting entirely of 737
aircraft. It is an extension of the previous DC-9 research,
but now provides more meaningful information, as the DC-9
aircraft data were composed of numerous operators with
heterogenous fleets and differing operating and maintenance
policies.

Multiple regression and NN models are the principal two
forecasting methods examined. Autoregression, exponential
smoothing and moving average time series forecasting tech-
niques are also evaluated. Both NNs and multivariate statis-
tical methods have their advantages and disadvantages, and
many of their properties are complementary. NNs are
universal approximators and the learned model may be
continuously adapted to new data without needing to store
previous data. Recurrent networks are naturally well suited
for nonlinear dynamic modeling. However, because NNs
function essentially as black boxes, their models give
limited physical insight into the data. Conversely, linear
multivariate statistical methods provide physically interpre-
table models and the algorithm used for determining the
model parameters for large data sets builds the model in a
stepwise manner and has guaranteed convergence.
However, linear multivariate statistical methods are unable
to capture nonlinear behavior, and the models are usually
not adapted continuously to new data. Adapting or extend-
ing linear multivariate statistical methods to model
nonlinear input–output relationships has helped extend
their modeling abilities. These nonlinear multivariate meth-
ods lie at the interface of neural and statistical methods and
combine properties of neural networks and linear multivari-
ate statistical methods. There have been some efforts on
revealing the properties and connections between various
linear multivariate statistical methods. However, these
efforts have focused on only neural or only statistical meth-
ods. Consequently, there has been little cross-fertilization
between the two fields, and we are still missing a unifying
view that brings together both NNs and linear or nonlinear
multivariate statistical methods [8].

The paper is organized as follows: first, the SDR trending
models for the DC-9 aircraft are presented; second, some

regression modeling technical issues are addressed and then
the DC-9 NN models are presented; third, the SDR trending
models for the 737 aircraft are provided, and then a final
section discusses some managerial considerations involved
with SDR trending.

2. SDR trending for the DC-9 aircraft

For completeness, this section includes a description of
the DC-9 SDR trending models that were previously devel-
oped for the whole of the aircraft, for recorded cracking and
corrosion cases, and for major structural component group-
ings.

2.1. Data description for the DC-9 SDR trending models

Our research team was provided with a subset of the SDR
database that had been merged with the Aircraft Utilization
(ARS) database for the same set of planes. This merged
database was created by Battelle (Rice [9]) and consisted
of 1308 observations for the DC-9 aircraft for the period
April 1974 to March 1990. Table 1 displays sample data.
Only the following quantitative data for each plane were
available in the merged database:

• Age;
• Estimated Flight Hours;
• Estimated Number of Landings.

Since actual data on flight hours and landings were not
reported directly in the SDR database, the estimated flight
hours and estimated landings are derived based upon the
original delivery date of the plane to the first airline, the
date of the ARS data reference, and the SDR date. The
equations developed by Battelle for these derived values
are reported in Ref. [9] and are presented below:Estimated
Flight Hours� [(SDRDate2 ServiceDate)/(ARSDate2
ServiceDate)] × FHSCUM,Estimated Number of
Landings � [(SDRDate 2 ServiceDate)/(ARSDate2
ServiceDate)]× LDGSCUM where SDR Date� date of
the SDR report (SDR database); Service Date� original
delivery date of the plane to the first airline (ARS database);
ARS Date� date of the ARS report (ARS database);
FHSCUM � cumulative fuselage flight hours (ARS
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Table 1
Sample of SDR and ARS ‘‘Merged’’ DC-9 data [9]

Aircraft model Serial numbera SDR date Part name Part location Part condition Estimated age Estimated flight hours Estimated landings

DC9 333 84-03-22 Skin E1 E Compt Cracked 17.74 32 619.03 53 999.20
DC9 333 84-03-22 Skin Aft bag bin Cracked 17.74 32 619.03 53 999.20
DC9 333 86-07-07 Skin Fuselage Cracked 20.03 36 836.23 60 980.56
DC9 444 80-06-20 Skin Galley door Cracked 13.24 34 396.44 33 888.77
DC9 444 81-12-01 Skin FS625 Corroded 14.69 38 160.55 37 597.32
DC9 444 87-05-11 Skin Rt wheel well Cracked 20.14 52 299.10 51 527.19
DC9 444 87-05-11 Skin STA 580-590 Cracked 20.14 52 299.10 51 527.19

a Fictitious serial numbers are used owing to confidentiality of data.



database); and LDGSCUM� cumulative fuselage landings
(ARS database).

Since the ARS date time lagged the SDR date, Rice extra-
polated the quantitative ARS data on flight hours and land-
ings to the SDR date. He developed a multiplier by
calculating the ratio of (SDR Date2 Service Date/ARS
Date 2 Service Date) and then extrapolated the flight
hours and landings at the ARS date to the date of the SDR.

2.2. DC-9 SDR multiple regression models

Initially, regression models were created using the 1308
DC-9 observations in their original format, referred to as the
‘ungrouped’ data. For the ungrouped data, the number of
SDRs for each airplane is based on the cumulative number
of data records (each record only represents one SDR).
When cases with missing data were eliminated, there were
a total of 1229 usable data cases. The coefficients of multi-
ple determination, orR2 values, for these models were very
low with the ‘best’ model having anR2 value of 0.2448 and
a coefficient of variation (CV) of 69.85. The CV reported
here is the ratio of the root mean square error of the model to
the sample mean of the dependent variable multiplied by
100 and indicates how well the model fits the data. If the
model does not fit the data well, then the CV becomes large.
It appeared that there was much noise in the data as a plot of
the ungrouped data revealed extensive fluctuations.

2.2.1. DC-9 data grouping strategies
In an attempt to create robust SDR prediction models that

will provide SDR profiles for a representative DC-9, differ-
ent data grouping strategies are used. Such an approach was
used in Luxhøj and Jones [10], and Luxhøj [11–13] to create
large scale logistics models for the U.S. Navy. These
‘‘population’’ models were developed to determine both
maintenance and system repair/replacement strategies for
large groupings of similar equipment based on operating
hours, operating environment, failure mode, etc.

Using multiple regression models, data grouping strate-
gies for age, estimated flight hours, and estimated landings
are developed based upon a smaller set of averaged data to
predict the total expected number of SDRs/year, the number
of SDRs/year for cracked cases, and the number of SDRs/
year for corrosion cases for the DC-9 aircraft. The ‘‘best’’
grouping strategy for each model case is then selected based
upon highestR2 value.

To provide a means for checking the SDR predictions
against existing data, the data were partitioned into two
different sets based on aircraft serial numbers. The first set
was used to build the prediction model and the second set
was used to evaluate the prediction model’s performance on
unfit data. Such an approach is useful for testing prediction

model generality [14]. This approach is also used in NN
modeling and is analogous to creating a ‘training’ set of
data to build the model and a ‘production’ set of data to
evaluate model performance on new data. These terms are
used in this paper to distinguish between the two data sets.
The original data were partitioned into mutually exclusive
training and production sets by using serial numbers for the
different aircraft. Two-thirds of the data were placed into the
training set, and one-third into the production set to facil-
itate cross-validation checks.

After the data have been partitioned into training and
production sets, then a grouping strategy is similarly applied
to each data set. For example, an age grouping strategy is
outlined below:

1. Group the data to create age ‘cohorts’ (i.e. groups of 1, 2,
3,…-year-old planes).

2. Calculate theaverageflight hours and number of land-
ings for eachage cohort.

3. Calculate the average number of SDRs per number of
aircraft in eachage cohort.

Forward stepwise regression is used where variables are
added one at a time. Partial correlation coefficients are
examined to identify an additional predictor variable that
explains both a significant portion and the largest portion
of the error remaining from the first regression equation.
The forward stepwise procedure selects the ‘best’ regression
model based on highestR2 from the following list of possi-
ble explanatory variables: age, flight hours, number of land-
ings, age2, flight hours2, number of landings2, age× flight
hours, age× number of landings, flight hours× number of
landings, flight hours/age, and number of landings/age. The
default stopping criterion for theF test to determine which
variable enters the model uses a significance level of 0.15.
In the second stage of our analysis, the best prediction
model was chosen on the basis of lowest MSE on the train-
ing and production data, since MSE is a better indicator of
predictive accuracy. The quadratic terms were considered in
an inherently linear model to evaluate any non-linear rela-
tionships and the impact of interaction terms was evaluated.
The forward stepwise procedure was used to find a predic-
tion equation with anR2 value close to 1 and to provide an
equation that was economical – one that used only a few
independent variables.

As a result of the grouping strategy, all interpretations are
now with respect to the average number of SDRs per year.
In the example above, the dependent variable becomes the
average number of SDRs for a representative DC-9 with a
‘profile’ of estimated flight hours and estimated landings as
defined by its associated age cohort. For the grouped data,
we now have the number of SDRs for each airplane with
respect to aninterval (i.e., age, flight hours, or landings).
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The different structure of the data between grouped and
ungrouped records led to structural differences between
the regression models and to the use of different explanatory
variables.

The grouping procedure resulted in the following:

A prediction model for the overall number of SDRs per
year for a representative DC-9 that uses the ‘age’ data
grouping strategy is given below:Overall no. of SDRs�
(0.00256264× agesq)2 (4.038133× 1029 × fhrsq) 1
(0.002347× fhr/age)2 4.173934.

Note that this prediction model makes use of only three
independent variables — the age squared (agesq), the flight
hours squared (fhrsq), and flight hours/age (fhr/age). TheR2

value is 0.9297 which indicates that this model can explain
92.97% of variability of the expected number of overall
SDRs/year about its mean. This model was developed
based upon 16 grouped data records that corresponded to
aircraft ranging from approximately 8 to 24 years old.

An important point to remember when using this model is
that one must have a sufficiently large data sample of DC-9
aircraft in order to compute ‘‘averages’’ of estimated land-
ings and flight hours for a specified aircraft age. The more
data that one has, the better one can model a representative
aircraft using the data grouping strategy as previously
discussed.

2.3. Regression modeling adequacy issues

The regression models were examined for multicollinear-
ity, since a high degree of multicollinearity makes the
results not generalizable as the parameter estimates in the
model may not be stable due to the high variance of the
estimated coefficients. Since flying hours, number of land-
ings, and the age of an aircraft are interrelated, multicolli-
nearity is inherent in the independent variables.

Two statistical measures of multicollinearity are the toler-
ance (TOL) value and the variance inflation factor (VIF)
[15]. The TOL value is equal to one minus the proportion
of a variable’s variance that is explained by the other predic-
tors. A low TOL value indicates a high degree of collinear-
ity. The VIF is the reciprocal of the TOL value, so a high
variance inflation factor suggests a high degree of collinear-
ity present in the model. The VIF and TOL measures
assume normality and are typically relative measures. A
high TOL value (above 0.10) and a low VIF value (below

10) usually suggest a relatively small degree of multicolli-
nearity [15].

While parsimonious regression models were developed by
observing the VIF and TOL measures during model building
and selection, an attempt was also made to remove multi-

collinearity by removing the linear trend from the observed
variables. Both the dependent and independent variables
were transformed by replacing their observed values with
their natural logarithms. While this approach was successful
in reducing multicollinearity, the resulting regression models
all had higher coefficients of variation and lowerR2 values
than models without such variable transformations.

There are times in regression modeling when the assump-
tion of constant error variance (i.e. homoscedasticity) may
be unreasonable and heteroscedastic error disturbances will
occur. When heteroscedasticity is present, ordinary least-
squares estimation places more weight on the observations
with large error variances than on those with small error
variances. The White Test is used in this study to test for
heteroscedasticity [14]. In the White Test, the null hypoth-
esis of homoscedasticity is evaluated and the test does not
depend critically on normality. The results of the White Test
on the data are reported later in this section.

Alternative grouping strategies to ‘age’ were also exam-
ined. Graphical analysis was used to examine the tradeoff of
the number of observations versus adjustedR2 values to
determine interval grouping sizes for estimated landings
and estimated flight hours. When using the data grouping
strategy of estimated landings, the suggested interval size is
4000 landings for the SDR cracking and corrosion cases and
5500 landings for the total number of SDRs. When using the
data grouping strategy of estimated flight hours, the
suggested interval grouping size is 4000 h. When analyzing
the graphs, the goal is to find an interval grouping size that
maximizes the adjustedR2 value, yet results in the use of a
reasonable number of observations (i.e.,n $ 16 which
corresponds to aircrafts ranging from 8 to 24 years old) to
facilitate model development. Also, there were upper limits
to the interval sizes for landings and flight hours beyond
which too few groups resulted. The adjustedR2 value is
used because the number of predictors is changing for
each alternative interval size.

As discussed earlier, prediction models were developed
using training data and evaluated on production data. Since
the goal was to maximize the accuracy of the SDR
predictions, the Mean Square Error (MSE) was used for
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Model No. of data records ‘Grouped’ no. of data records

Training Production Training Production

Overall no. of SDRs 805 424 16 14
No. of SDRs (cracking) 572 306 16 16
No. of SDRs (corrosion) 242 127 10 9



comparative purposes. Although the MSE has some bias, it
is an estimator with very low variance.

Table 2 presents the ‘best’ SDR regression models for the
DC-9 aircraft comparing across grouping strategies, predic-
tor variables, and outcome variable. The table also displays
the squared partial correlation coefficients that may be used
to assess the relative importance of the different indepen-
dent variables used in the regression models. The VIFs for
the overall SDR and corrosion models are acceptable and
suggest a relatively small degree of multicollinearity.
However, the VIF for the cracking model suggests a moder-
ate degree of collinearity, and this model should be used
with caution as the parameter estimates may not be stable.
The application of the White Test resulted in the acceptance
of the null hypothesis of homoscedasity at the 5% signifi-
cance level for all three models and suggests that the
assumption of constant error variances is reasonable.

Based on an analysis of the 1229 data observations for
merged SDR and ARS data, it appears that the data grouping
strategy results in SDR prediction models that may be used
to predict expected reporting profiles for a representative
DC-9. Confidence intervals may be calculated for the
expected number of SDRs/year so that a range of values
may be reported along with a point estimate. For example,
Fig. 1 displays the residuals and confidence limits for the
interval (CLI) that includes the variation for both the mean
and the error term. In essence, this figure graphically
displays the prediction interval for the overall number of
SDRs across all airlines for 95% confidence. Such an
approach establishes control limits or threshold levels
outside of which national SDR advisory warnings would
be posted. In order to construct confidence intervals for a
particular age group for a given airline, it is necessary to
consider the number of aircraft in that age group owned by
that airline. SDR prediction models for each airline could be
developed by following the same grouping methodology as
outlined above, but with the data partitioned by age and
airline. Such models were not developed in the DC-9
study, as only 2 of 22 airlines had a sufficient number of
data observations by airline.

It appears that ungrouped SDR and ARS data are not
useful for prediction purposes. Grouped data strategies
show promise in predicting SDR profiles based on the
DC-9 analysis. These data grouping strategies generally
result in robust models that are useful in developing aircraft
population profiles. A plausible reason for the apparent
success of the grouping strategy is that computing the aver-
age number of SDRs for an interval (i.e. age, flight hours,
number of landings) results in the dependent variable
becoming approximately normal due to the Central Limit
Theorem.

Of the three prediction models, the model to predict the
overall expected number of SDRs appears the ‘best’. It has
the second highestR2 value (0.9297), a low degree of multi-
collinearity, and low MSEs on both the training (0.1953)
and production (0.9219) data. For the training data, the
magnitude of the

������
MSE
p

is low relative to the sample mean
of 2.63 SDRs (i.e. ratio� 0.168). For the production data,
the ratio of the

������
MSE
p

to the sample mean of 2.92 SDRs is
higher (i.e., ratio� 0.329). If the

������
MSE
p

. 0.33× sample
mean, then normality is not a reasonable assumption and
additional distributional information is needed to construct a
useful confidence interval. When compared with the overall
SDR prediction model, the model for corrosion cases has a
higherR2 value, but there is a degradation of performance
on the production data based on MSE. The ratios of the
MSEs to the sample means for the training and production
data are 0.095 and 0.567, respectively. The model for corro-
sion was built on the smallest number of averaged data, and
this could account for its degraded performance on the
production data. The SDR prediction model for cracking
cases has the lowestR2 value, however, it has the best
performance on the production data. The ratios of the
MSEs to the sample means are 0.064 and 0.092; thus,
dispersion of the residuals around the mean is small.
When compared with the overall SDR prediction model,
the smaller number of averaged observations used in build-
ing the model for cracking may account for the lowerR2

value. Stem-and-leaf displays [16] for all models indicate
that the shapes of the distributions for the residuals are
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Fig. 1. Residual analysis and 95% confidence limits for overall SDR trending model.
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unimodal and bell-shaped. Box plot diagrams of the resi-
duals for all models imply symmetric data sets and that the
medians are nearly zero.

A limitation on these prediction models is that the results
presented in this paper are based on a relatively small
sample of merged DC-9 SDR and ARS data (i.e. 1229
observations) for the period 1974–1990. Generalizing the
results to other aircraft types should be done with caution.
The value or contribution of this study’s findings exists in
the methods and techniques used to identify the factors
influencing the expected number of SDRs.

2.4. DC-9 SDR neural network models

A parallel research effort focused on the development of
NNs to determine patterns in SDR reporting. NNs consist of
relatively simple processing elements (nodes or units)
connected by links. A unit receives the signal from the
input links and computes an activation level that it sends
to the next layer along the output links. The computation can
be divided into two parts. The first part is a linear function
which computes the weighted sum of all the input variables.
The second part is a nonlinear function (activation function)
which decides whether the output will be greater than the
threshold or not [17,18].

Backpropagation is the most popular method in multi-
layer feedforward networks. It can generalize well on a

variety of problems and it is used in most of the existing
practical applications of NNs. To develop a backpropaga-
tion model, a training set of data patterns that consist of both
inputs and the actual outputs observed must be developed.
The learning process, as depicted in Fig. 2, is repeated until
the error between the actual (correct) and predicted
(network) output converges to a predefined threshold. This
is accomplished by adjusting the interconnection weights,
wi’s, between layers of neurons.

As an alternative to a backpropagation neural network
(BPNN), a general regression neural networks (GRNN) is
known for its ability to train on sparse data sets. It has been
found that a GRNN gives better performance than backpro-
pagation for some problems [19]. It is particularly useful for
problems involving continuous function approximation
[19]. A GRNN network is a three-layer network that
contains one hidden neuron for each training pattern.
GRNN training differs from backpropagation networks
because training occurs in only one pass. A GRNN is
capable of functioning after only a few training patterns
have been entered. Both NN architectures were evaluated
in this research.

In NN modeling, theR2 value compares the accuracy of
the model with the accuracy of a trivial benchmark model
where the prediction is simply the mean of all the sample
patterns. A perfect fit would result in anR2 of 1, a very good
fit near 1, and a poor fit near 0. If the NN model predictions
are worse than one could predict by just using the mean of
the sample case outputs, theR2 will be 0. Although not
precisely interpreted in the same manner as theR2 in regres-
sion modeling, nevertheless, theR2 from NN modeling can
be used as an approximation when comparing model
adequacy with a multiple regression model (NeuroShell 2
[20]).

NN models for SDR prediction were also created using
alternative data grouping strategies as previously outlined
and the same training and production data sets as those used
in the regression analysis. The SDR neural network models
are presented in Table 3. Training times for the backpropa-
gation models were insignificant. Since model ‘fit’ and
prediction accuracy were deemed to be most important,
the R2value and MSE were used to select the ‘best’ NN
configuration. The best data grouping strategies as deter-
mined from the regression analysis were similarly applied
in NN modeling. These NN models may be used to predict
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Fig. 2. Neural network learning.

Table 3
DC-9 SDR NN models

Output No. of patterns Backpropagation (BP) modela Hybrid modelb

Training data Production data R2 MSE (training) MSE (production) R2 MSE (training) MSE (production) n

Overall no. of SDRs 16 14 0.9452 0.152 0.541 0.9603 0.110 2.626 4
No. of SDRs (cracking) 16 15 0.6899 0.009 0.409 0.8404 0.005 0.019 2
No. of SDRs (corrosion) 10 9 0.9411 0.086 3.125 0.9727 0.040 3.502 3

a For all BP models, inputs are Age, Fhr and Ldg.
b For all hybrid models, inputs are Age, Fhr, Ldg, Class 1,…, Classn, wheren is the number of class intervals.
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the average number of SDRs using a data grouping strategy
of one year time increments for the overall number of SDRs
and for the number of corrosion cases. To predict the aver-
age number of SDRs for cracking cases, the data grouping
strategy was based on increments of 4000 flight hours. In all
cases, the MSE was lower on the training data than on the
production data. Especially note that although the NN for
the corrosion case performed well on the training data (R2�
0.9411, MSE� 0.086), the MSE on the production data
increased significantly (MSE� 3.125). It should also be
observed that the model for corrosion cases had the least
number of training and production patterns derived from
data groupings with the least number of observations of
the three models constructed. Thus, this model should be
used with caution on unfit data as it does not appear to
generalize well.

As in regression modeling, 90% or 95% ‘confidence
intervals’ could be developed for the overall number of
SDRs and the number of SDRs for cracking and corrosion
cases. These confidence intervals could be displayed in a
fashion analogous to quality control charts serving as more
refined ‘alert’ indicators for inspectors that specify upper
and lower safety control limits by aircraft type.

The concept of a two-stage hybrid NN is tested in this
research to develop SDR prediction models to determine if
any incremental improvements could be obtained in predic-
tion accuracy. Table 3 also summarizes the results from
these hybrid NNs. The first stage uses a Probabilistic Neural
Network (PNN) to classify the age of a DC-9 aircraft into its
corresponding ‘class’ for the expected number of SDRs. A
PNN is a supervised NN that is used to train quickly on
sparse data sets [21]. This NN separates input patterns
into some defined output categories. In the process of train-
ing, the PNN clusters patterns by producing activations in
the output layer. The value of the activations correspond to
the probability mass function estimate for that category. It
was thought that the use of a PNN is this study could be
helpful in ‘‘wrinkling’’ the SDR data and facilitate the clas-
sification of SDRs based upon an input profile of aircraft
data.

For the overall SDR prediction model, the PNN is used in
this study to classify the number of SDRs into one of four
classes,class 1for 0 # S# 2, class 2for 2 # S# 4, class 3
for 4 # S# 6, and class 4 for 6# S# 8 whereSrepresents
the number of SDRs. The PNN is used in the first stage to
classify the age of a DC-9 aircraft into its corresponding
class for expected number of SDRs. This vector of age
and class then is fed into a BPNN to predict the number
of SDRs. The second stage then feeds the classified output
along with the above quantitative data to a BPNN to predict
the number of SDRs. As with multiple regression, models
were developed to predict the overall number of SDRs and
the number of SDRs for cracking and corrosion cases. For
the SDR cracking and corrosion cases, only two and three
‘classes’ were required, respectively, given the range for the
number of SDRs in each case.

In all SDR cases, the prediction results using the hybrid
models were better on the training data than from solely
using a three layer backpropagation architecture. However,
the MSEs using the production data only improved in the
cracking case. Further investigations are required with
larger data sets to determine the extent of the benefits of a
two-stage approach, as the training time significantly
increases with the hybrid model.

2.4.1. Comparison of DC-9 SDR regression and neural
network models

The ‘‘best’’ DC-9 SDR trending models compared across
modeling methods are identified in Table 4. The ‘best’
models for each case were selected based upon prediction
accuracy with the production data. In the case to predict the
overall number of SDRs, the three-layer backpropagation
model performs the best. To predict the number of SDR
cracking cases, the two-stage hybrid NN is selected, and a
regression model is selected as the ‘best’ method to predict
the number of SDR corrosion cases. However, an analysis of
Table 4 reveals that the regression models are strong second
choices with respect to prediction accuracy. Moreover, the
regression models typically take less time to develop than
NN models and there is a rich theory for testing regression
model adequacy. The modest improvements in predictive
accuracy from using a NN in this SDR study do not seem
to support the extra ‘costs’ of computational time and
modeling effort required to find a NN that can outperform
a regression model.

In the DC-9 study, the information gained from regres-
sion analysis regarding the ‘best’ data grouping strategies
helped to improve the performance of a NN model.
However, the use of regression analysis to identify the
‘‘best’’ set of explanatory variables to use as inputs to a
NN needs further investigation.

In this study to develop national SDR prediction models,
the original ungrouped data set appeared to be noisy. A
‘population concept’ proved to be a very effective modeling
technique for both regression analysis and in the construc-
tion of NNs for determining strategic safety inspection indi-
cators. An important technical issue in using population
modeling techniques has to do with failure prediction for
parts that have been repaired or replaced. The failure rates of
a new part in an old aircraft and new versus repaired parts
will affect the inherent characteristics of the aircraft popula-
tion. One modeling approach is to assume that a repair
returns the part to the condition that it was in just prior to
failure, so that the part can remain in the same original
population. However, this assumption may not be realistic,
and repaired parts may need to be modeled with a separate
grouping with new population characteristics. For a detailed
discussion of preventive maintenance in population models,
see Agee and Gallion [22].

While the population concept is constructive for devel-
oping models to predict national norms for SDR reporting,
there is a loss of information in grouping the data. It is
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recognized that SDR reporting profiles will vary by differ-
ences in flying patterns, airlines, location, fleet size, etc. The
use of a population concept for two operators of homoge-
neous fleets is presented in Section 3.

2.5. SDR trending for components of the DC-9 aircraft

In an attempt to further explore the use of NNs to create
‘‘safety alerts’’, Shyur et al. [23] report on the development

J.T. Luxhøj / Reliability Engineering and System Safety 64 (1999) 365–381 375

Fig. 3. Schematic of the DC-9 model 30 aircraft.



of SDR prediction models for the DC-9 aircraft that use NNs
for 11 major structural groupings, such as the cargo door,
rudder, wing, nose, etc. The NN models use the three-layer
backpropagation learning architecture to predict the expected
number of SDRs for cracking cases. A structural schematic of
the DC-9 Model 30 aircraft is presented in Fig. 3.

For the 1308 sample data observations, there are only 569
data observations for cracking cases for the DC-9 Model 30
aircraft, and only 390 observations identify the part location.
As there were insufficient and incomplete input data for
each part location, the part locations were categorized into
11 larger ‘groupings’ as presented in Table 5. Note that the
part location numbers in Table 5 do not correspond to the
part location numbers in Fig. 3 due to the ‘grouping’ strat-
egy. The corresponding sample sizes for each major part
grouping is superscripted in parentheses. Approximately
70% of the cracking cases occurred in the aircraft main
fuselage areas and the ‘Fuselage STA 588 to 996’ (recoded
as ‘Part 3’) includes 22.2% of the cracking cases.

A three-layer backpropagation architecture is used to
classify the SDR cracking cases for data grouped by age
in increments of 0.5 years. Moreover, the number of SDRs
for one aircraft in a certain age group is calculated. Due to
the age ‘grouping’ strategy, only 18 input patterns can be
used to train the NN model. The model includes three input
neurons (aircraft age, flight hours, and number of landings)
and 11 output neurons that identify the number of SDRs in
11 different part locations.

As displayed in Table 5, five of the 11 models haveR2

values above 0.800 which suggests that a BPNN is very
effective in predicting the number of SDRs for major struc-
tural groupings of part locations. The ‘best’ part location
backpropagation models in this study are for AFT Press
Bulkhead (R2 � 0.8744), fuselage nose structure (R2 �
0.8563), fuselage stations 588–996 (R2 � 0.8504), cargo
door (R2 � 0.8371), and fuselage stations 229–588 (R2 �
0.8329). However, the model cannot predict well in the

‘Pylon AFT panel’ case (R2 � 0.4891), for instance, due
to the very limited sample size (i.e. only seven observa-
tions). The number of observations for each of the 11 part
locations is one major factor that has an influence on the
accuracy and efficacy of the model.

3. SDR Trending models for the 737 aircraft

This section presents the results of the current research to
develop SDR trending models for specific operators with
homogeneous fleets. Two primary data sources are used in
this current research: the International Aircraft Operators
Information System (IAOIS) and the SPAS. These data
sources were not available for use during the development
of the DC-9 SDR trending models. The International
Aircraft Operators Information System (IAOIS) was origin-
ally developed by Wichita State University and is now
referred to as the Federal Registry [24]. It is an automated
information system which will provide useful aircraft opera-
tor information on all United States type-certificated aircraft
and airlines worldwide. This system uses commercially
available data. The SPAS integrates aircraft operator,
aircraft agencies, aircraft type, and aircraft personnel data.
The SPAS contains a number of performance measures
relating to operations, airworthiness, manuals, records and
reporting, maintenance, management, training, and finances.

The SPAS and IAOIS have large amounts of data;
however, neither of them is complete. When these two data-
bases are merged we have a relatively complete profile for
the aircraft operators. First, an aggregated analysis of the top
ten operators of 737 aircraft was attempted. After the query,
the top ten operators of 737 aircraft were determined;
however, the SPAS operator data only had mixed-model
SDRs. Fortunately, Operator A’s and Operator B’s fleets
consisted entirely of 737 aircraft. There were 10 351 and
1187 records for Operators A and B, respectively.

Since the SDR numbers in the SPAS database are aggre-
gated forall aircraft for a certain operator, the monthly
hours and cycles are ‘collapsed’ for all the aircraft to obtain
‘‘average’’ aircraft hours and cycles. For Operator A, 16.5
records form a single data record on average and 145.8
records for Operator B. A new data set was created with
the collapsed data for the time period from 30 January 1990
to 30 November 1995 for a total of 71 records.

The following definitions for the SPAS performance
measures are used in this research [2]:

AW (Airworthiness) Surveillance Results: Assessment of the
results from all airworthiness surveillances performed on an
aircraft operator. Indicates the percentage of unfavorable
AW surveillance records for a given 1-month period
smoothed. AW surveillances focus on the maintenance-
related aspects of safety performance (i.e. procedures, log
books, equipment, preventive maintenance schedules, etc.)
OPS (Operations) Surveillance Results: Assessment of the
results from all OPS surveillances performed on an aircraft
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Table 5
SDR NN models for components of the DC-9 aircraft [the parameters used
were: Learning rate� 0.01; Momentum� 0.05; Initial weight� 0.3;
Patterns� 20; Input layers� 3 (Avg. age, Avg. flight hours, Avg. land-
ings); Hidden layers� 21; Output layers� 11 (No. of SDR for each part
location)]

Part no. Part description (.): no. of
observations

R2 value

1 Fuselage nose structure(51) 0.8563
2 Fuselage station 229 to 588(37) 0.8329
3 Fuselage station 588 to 996(81) 0.8504
4 Fuselage station 996 to 1087(68) 0.7382
5 Fuselage tail structure(39) 0.6837
6 Rudder(13) 0.7832
7 Pylon aft panel(7) 0.4926
8 Wing(15) 0.5771
9 Passenger fwd entrance door(27) 0.7948
10 Cargo door(7) 0.8371
11 Aft press blkhd(20) 0.8744



operator. Indicates the percentage of unfavorable OPS
surveillance records for a given one-month period
smoothed. OPS surveillances focus on an operator’s
procedural knowledge to follow safety regulations (e.g.
preflight checks, inflight operations, emergency measures,
etc.), and the performance abilities of the crew (e.g. the
flight attendants’ knowledge of their jobs, the pilot’s need to
maintain certification, etc.)
SDR FAR Compliance: Assessment of an air operator’s
compliance with the Federal Aviation Regulations (FARs)
for reporting mechanical failures. Indicates the number of
SDRs submitted by an aircraft operator over a six-month
period.

Sample graphs of monthly SDRs for Operators A and B
are exhibited in Fig. 4.

3.1. SDR 737 multiple regression models

We selected the stepwise method since it is the most
appropriate method for identifying a model with only a
few independent variables. The null hypothesis was evalu-
ated at the 5% level of significance. The null hypothesis here
is that a variable has a significant effect on the dependent
variable.

The coefficients of multiple determination, orR2 values,
for these first models were not very good, with the ‘best’
models for Operators A and B havingR2 values of 0.1731
and 0.4573, respectively, and coefficients of variation (CV)
of 18.05197 and 21.40486, respectively. As with the DC-9
SDR data, it appeared that there was much noise in the data
because a plot of the SDRs revealed extensive fluctuations.

The above results were the best we could determine
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Fig. 4. Actual monthly SDRs for 737 Operators A and B.



without including any lag variables. These initial results
were not satisfactory, which indicated that the SDR 6-
month moving sum data did not have a linear relationship
with the independent variables. From an autocorrelation
analysis, we observed that the SDR 6-month moving sum
data had a strong relationship with the one-month lag data.
The R2 values reach nearly 0.9. So we included the lag
variables [e.g LAG1 (1-month lag), LAG2 (2-month lag),
etc.] in our multiple regression models and the results are
shown in Table 6.

The multiple regression forecasting model for the SDR 6-
month moving sum for Operator A is:Number of SDRs (6-
month moving sum)� 2 28.8491 1.037× SDRAR31
0.0634 × CYCLES where SDRAR3� forecast of the
number of SDRs from an autoregressive 3 (AR3) time series
model and CYCLES � number of aircraft cycles (i.e.
number of takeoffs and landings). The AR3 used in this
research is of the general form:SDR (AR3)� a1SDRt21

1a2SDRt22 1 a3SDRt23 1 b where a1, a2, and a3 are
coefficients determined from fitting the data,b is a constant,
and the subscriptst 2 1, t 2 2, andt 2 3 are used to indicate
the number of SDRs from 1 month ago, 2 months ago, etc.

The multiple regression forecasting model for the 6-
month moving sum of SDRs for Operator B is:Number of
SDRs (6-month moving sum)� 2 459.6231 1.003 ×
SDRAR3 1 1.645 × HRS where SDRAR3 is as defined

earlier and HRS� number of aircraft hours. Modeling
results are shown in Table 7.

Note that only two variables are included in both fore-
casting models and theR2 values for Operators A and B are
0.8672 and 0.8834, respectively, which indicate that these
models can explain 86.72% or 88.34% of variability of the
expected number of SDRs about their mean. AdjustedR2

values are 0.8613 and 0.8783, respectively, which are nearly
as good as theR2 values since we have only two independent
variables in each model.

The VIFs for both models are acceptable and suggest a
small degree of multicollinearity. The application of the
White Test resulted in the acceptance of the null hypothesis
of homoscedasticity at the 5% significance level for both
models and suggests that the assumption of constant error
variances is reasonable.

Based on an analysis of the merged data, it appears that a
population modeling concept, or data merging strategy,
results in SDR prediction models that may be used to predict
expected reporting profiles for 737 aircraft of a certain
operator. As with the SDR trending models for the DC-9
aircraft, confidence intervals may be calculated for the
expected 6-month moving sum of SDRs for the 737 aircraft
so that a range of values may be reported along with a point
estimate.

Other classical forecasting methods, such as exponential
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Table 6
Classical forecasting results for 737 Operator A

Techniquea Dependent variableb MSE for training (80%) MSE for production (20%) Variables in the model Notes

MR SDR 6-month 107.88 366.45 [3] SDRAR3, CYCLES R2 � 0.8672;
VIF � 1.027,
1.027

AR SDR 6-month 117.71 359.30 [2] LAG1, LAG2 R2 � 0.8536
AR SDR 6-month 113.23 348.58 [1] LAG1, LAG2, LAG3 R2 � 0.8513

ES SDR monthly 159.15 168.84 {1} a � 0.3
AR SDR monthly 111.48 182.85 {3} LAG1 R2 � 0.0850
AR SDR monthly 109.37 181.26 {2} LAG1, LAG2 R2 � 0.1112

a Legends: MR – Multiple Regression; ES – Exponential Smoothing; AR – Autoregression; MA – Moving Average.
b Ranks: SDR 6-month [1–best; 3–worst]; SDR monthly {1 – best; 3 – worst}.

Table 7
Classical forecasting results for 737 Operator B. (Legend: MR – Multiple Regression; ES – Exponential Smoothing; AR – Autoregression; MA – Moving
Average. Ranks: SDR 6-month [1 – best; 3 – worst]; SDR monthly {1 – best; 3 – worst}.

Technique Dependent variable MSE for training (80%) MSE for production (20%) Variables in the model Notes

MR SDR 6-month 990.34 1219.56 [1] SDRAR3, HRS R2� 0.8834;
VIF �
1.000447,
1.000447

ES SDR 6-month 1161.77 1805.65 [3] a � 0.01
AR SDR 6-month 1113.03 1589.00 [2] LAG1, LAG2, LAG3 R2 � 0.8690

AR SDR monthly 600.14 948.61 {2} LAG1, LAG2 R2 � 0.1280
AR SDR monthly 557.14 885.65 {1} LAG1, LAG2, LAG3 R2 � 0.2025
MA SDR monthly 549.44 1043.70 {3} 5 period



smoothing, moving average, and autoregression, were also
studied. For Operator A, the two and three order autoregres-
sion outperforms multiple regression, but not by a signifi-
cant amount. For Operator B, multiple regression is the best
method followed by a three order autoregression and then
exponential smoothing. Modeling details are shown in
Tables 6 and 7.

3.2. SDR 737 neural network models

For Operators A and B, other NN structures, such as the
GRNN, did not outperform the backpropagation structure.
The ‘best’ models for each operator are listed in Table 8.
Graphs of predicted versus actual values for the production
data sets for Operators A and B are shown as Figs. 5 and 6,
respectively.

Notice that the predicted values fit the actual values very
well for the production data for Operator A. The MSE of
62.35 is six-fold lower than that from the classical methods.
Conversely, we did not obtain as good a result for Operator
B. It is noted that the fleet size for Operator A remains
relatively stable at 16 aircraft in the forecast period, while
Operator B does not show the same trend as its fleet size is

steadily increasing. Even if we include the independent vari-
able SDRs/fleet size, Operator B’s NN model still does not
provide a good fit to the data. This suggests that an opera-
tor’s SDR pattern is not related closely to its fleet size.
Based on field experience, we have reason to believe that
fleet size plays a different role in forecasting SDRs for
different operators.

For Operator A, the BPNN model performs better than
the classical methods. For Operator B, the MR model
performs slightly better than the BPNN model. According
to correlation analyses, our data show a low linear relation-
ship between the input and the output variables. Traditional
classical methods can only deal with linear relationships but
NNs can approximate well on nonlinear relationships.

4. Conclusions and recommendations

Previous research with the development of SDR forecast-
ing models for the DC-9 aircraft were aggregate models that
contained mixed fleet data for different operators. The SDR
forecasting models in the current research are for a specific-
make-model (i.e. 737 aircraft) for two distinct operators

J.T. Luxhøj / Reliability Engineering and System Safety 64 (1999) 365–381 379

Table 8
Comparison of ‘‘Best’’ classical and NN Methods for 737 operators

Methoda MSE for training (80%) MSE for production (20%)

AR – Operator A 113.23 348.58
BPNN – Operator A 160.88 62.35
MR – Operator B 990.34 1219.56
BPNN – Operator B 2607.71 1255.49

a AR – Autoregression; BPNN – Backpropagation Neural Network; and MR – Multiple Regression.

Fig. 5. BPNN results (production data) for 737 Operator A.



which are more meaningful and provide more insight. The
monthly number of SDRs was checked as the dependent
variable, but poor results were obtained. Models were then
developed to trend the 6-month moving sum of SDRs. For
Operator A, the NN model is much better than the best
classical method. For Operator B, classical methods
perform slightly better. It is difficult to generalize from
these mixed results, since only two operators whose fleets
consisted entirely of 737 aircraft are included in the current
study. The NN models were easier to deal with in this study
and tended to give better results if the data pattern did not
change drastically during the study period. However, clas-
sical models were more understandable and explainable.

The 6-month moving SDR sum shows promise in the
development of SDR trending models. This study of two
aircraft operators suggests that monthly patterns are much
harder to trend. Owing to the mixed results obtained from
using alternative forecasting methods, this research also
suggests that further study is required to ascertain the role
that fleet size plays in SDR trending. It should be noted that
the SDR submission rate is only one performance measure
that focuses solely on equipment inoperability, and that a
more comprehensive multivariate data analysis is required
in order to develop safety profiles. Nevertheless, the SDR
submission rate is an important metric that has aviation
safety implications. As such, the forecasting methods
presented in this paper offer technical enhancements for
SDR trending compared to the current qualitative method
of visual observation of graphical plots.

While forecasting the total number of SDRs for a 6-
month period is an important first step in planning

surveillance activity, the forecasting of SDRs by part
type (e.g. landing gear, cargo door, etc.) would enable
focused inspections by fleet type on the most problematic
aircraft components. The research methods for SDR trend-
ing of components for the DC-9 aircraft are being extended
to the 737 aircraft.
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